翻訳と辞書
Words near each other
・ Kaufbeuren Air Base
・ Kaufdorf
・ Kaufering
・ Kaufering concentration camp
・ Kaufering station
・ Kauffenheim
・ Kauffman Center for the Performing Arts
・ Kauffman Fellows Program
・ Kauffman Glacier
・ Kauffman House
・ Kauffman House (Grand Lake, Colorado)
・ Kauffman index of entrepreneurial activity
・ Kauffman Mill
・ Kauffman Ministry
・ Kauffman Motor Vehicle Company
Kauffman polynomial
・ Kauffman Stadium
・ Kauffman Vodka
・ Kauffman's Distillery Covered Bridge
・ Kauffman, California
・ Kauffmann Memorial
・ Kauffmann olefination
・ Kauffman–White classification
・ Kaufhaus des Westens
・ Kaufhaus Wronker
・ Kaufland
・ Kaufman & Broad S.A.
・ Kaufman Act
・ Kaufman Assessment Battery for Children
・ Kaufman Astoria Studios


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kauffman polynomial : ウィキペディア英語版
Kauffman polynomial

In knot theory, the Kauffman polynomial is a 2-variable knot polynomial due to Louis Kauffman. It is initially defined on a link diagram as
:F(K)(a,z)=a^L(K)\,
where w(K) is the writhe of the link diagram and L(K) is a polynomial in ''a'' and ''z'' defined on link diagrams by the following properties:
*L(O) = 1 (O is the unknot)
*L(s_r)=aL(s), \qquad L(s_\ell)=a^L(s).
*''L'' is unchanged under type II and III Reidemeister moves
Here s is a strand and s_r (resp. s_\ell) is the same strand with a right-handed (resp. left-handed) curl added (using a type I Reidemeister move).
Additionally ''L'' must satisfy Kauffman's skein relation:
:
The pictures represent the ''L'' polynomial of the diagrams which differ inside a disc as shown but are identical outside.
Kauffman showed that ''L'' exists and is a regular isotopy invariant of unoriented links. It follows easily that ''F'' is an ambient isotopy invariant of oriented links.
The Jones polynomial is a special case of the Kauffman polynomial, as the ''L'' polynomial specializes to the bracket polynomial. The Kauffman polynomial is related to Chern-Simons gauge theories for SO(N) in the same way that the HOMFLY polynomial is related to Chern-Simons gauge theories for SU(N) (see Witten's article
"Quantum field theory and the Jones polynomial", in Commun. Math. Phys.)
==Further reading==

*Louis Kauffman, ''On Knots'', (1987), ISBN 0-691-08435-1

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kauffman polynomial」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.